
Abstract of Paper Proposed for Presentation at the

22nd AIAA Applied Aerodynamics Conference

Providence, RI

16-19 August, 2004

Automated Parameter Studies Using a Cartesian
Method

Scott _?/I. n.4ErE2EF Michael J. _A_ft.ormid
ELORET NASA Ames Research Center
MS T27B hfS T27B

Moffett Field, CA 94035
smurmanOnas.nasa. gov aftosmis@nas. nasa.gov

Moffett Field, CA 94035

Marian Nemect
NASA Ames Research Center

MS T27R
Moffett Field. CA 94035

nemecOnas.nasa.gov

1 Introduction
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated

points in a design space by performing steady-state computations at Lxed flight con-
ditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration
of interest. This “point analysis” provides detailed information about the flowfield,
which aides an engineer in understanding, or correcting, a design. A point analysis is
typically performed using high fidelity methods at a handful of critical design points,
e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.

‘Senior Research Scientist, hIemher AIAA
+Research Scientist , Senior Member -4IAA
INRC Research Associate, Member .41-44A

1

a

Current research in CFD is aimed at extending the point analysis to a !!set analysis”,
where CFD simulations are rapidly performed throughout the entire design space -
varying both flight conditions and control surface deflections - in order to provide a
broader picture of perforinance[l-3]. Such a set analysis is used both in initial design
to quickly estimate performance, and in final design to augment traditional methods
such as wind tunnel tests and aerodynamic modeling. The result of a set analysis
is both a database containing the aerodynamic performance, and a broad view of
critical flow features, such as shock strength and location. A typical CFD aerody-
namic database generated from a set analysis currently will contain on the order of
lo4 - lo6 datapoints, depending upon the problem requirements. In order to manage
such a large number of computations, automated tools are a necessity, not only for
generating the data, but also harvesting meaningful results in a post process.

The current work uses a Cartesian, embedded-boundary method[4] to automate
the generation of a vehicle aerodynamic parameter study. The Cartesian method
provides an efficient and robust mesh generation capability which can handle an
arbitrarily-complex geometry description. Recently, a method to generate the water-
tight surface triangulation required for Cartesian mesh generation directly from a
CAD representation of the geometry has been developed[5]. This, combined with
the Cartesian embedded-boundary method provides a robust and automatic mesh
generation infrastructure which can be utilized through the design process. This
meshing scheme is combined with a parallel, multi-level scheme for solving the steady-
state Euler equations, either on shared- or distributed-memory architectures[G, 71.

The current abstract briefly describes a modular infrastructure built to automati-
cally perform complex parameter studies about complex configurations which include
movable control surfaces. This modular system is built around pre-existing stand-
alone applications (mesh generator, flow solver, force/moment calculator, etc.) , using
scripts to provide a flexible “glue” between components. A general system of speci-
fying and manipulating control surfaces using the Geometry Manipulation Protocol
(GhlP) [8] is presented which automatically re-generates appropriate rigid-body con-
figurations from a geometry and control surface description. A sample aerodynamic
database including 4700 datapoints for a prototype autonomous biornorphic explorer
for Mars[9] is included as a demonstration in the current abstract. This CFD database
has been used to develop a neural-network guidance and control system for future
flight tests. The proposed paper will also include a discussion of issues related to gen-
erating a parameter study using CFD, including steering the process to cluster around
critical points (and neglect benign areas), integrating the process with a 3rd-party
software database storage (e.g., SQL, ODBC, ...), exploiting symmetry (true and ap-
proximate), and building and using multiple levels of fidelity (resolution, geometric,
physical model, etc.) . The current discussion focuses on determining stability deriva-
tives from static geometry, however future work will also target the incorporation of
dynamic derivatives to provide rate of change data[lO].

2

c

2 Component Infrastructure

Figure 1: Schematic of the modular set of software components for performing an automated CFD
parameter sweep. The stand-alone applications are shown in red, and the control scripts which glue
the applications together in green.

Figure 1 shows a schematic of the modular set of software components used for
bidding z CFD aerodynamic database. The stand-alone applications are shown in
red. and the control scripts which glue the applications together in green. More
details on the specifics of the infrastructure will be provided after a brief overview.
Note that several low-level support scripts which are common to all of the tools are
not described. The entire parameter space is decomposed into a two-level hierarchy.
At the lowest level is a veloczty space which contains the wind vector for each data
point. This is characterized by the Mach number, angle of attack, and sideslip angle
(Mm, a, p). The next higher level contains a configurutzon space which represents all of
the possible geometric configurations (control surface deflections, 6,) being tested. A
single element of the configuration space contains all elements of the velocity space.
The rationale for this decomposition is the modular re-use of components. Each
element of the velocity space uses a fixed computational mesh, and is thus independent
of the configuration space; which requires a modified geometry and mesh for each
element. In other words, a parameter study can be computed using the velocity space
in isolation, or as a lower-level to a broader configuration space, without requiring
modification of the velocity space software components or architecture. The steerzng
sofilmre links the configuration space. velocity space, and the results database into

a coherent unit. The steering software monitors the results and determines which
element of the parameter space to compute next. and this command is sent to the
configuration space control script (or directly to the velocity space control script if
only a single configuration is being examined). The configuration control then passes
this to the velocity space. This hierarchy of command control continues through the
process, with each control script being responsible for handling input and output from
their isolated section of the process. This is similar to an object-oriented framework,
though here a rigid object-oriented interface is not maintained.

Since the elements of the process infrastructure are independent, each can evolve in
isnl~tion For ~ m m p l e the steering software can be as simplistic as iterating through
a uniform parameter space following the matrix element ordering, or as complex as
leveraging 3rd-party neural-network toolkits. This flexibility is key to providing a sys-
tem which can grow as more experience is gained with building aerodynamic databases
using CFD. Currently the steering software is intentionally straightforward. In the
final paper a prototype of more intelligent decision-making tools will be provided.

The emphasis of the current work in on an automated process, hence the user
interfaces (UIs) are at the highest level of the component hierarchy. The analyst
is charged with providing inputs to the system, and harvesting results, however the
control of the process is the purview of the script system. This is necessary, as
managing or steering tens of thousands of computations by hand is not practical or
desirable. The understanding is that if more details are required about a certain
isolated point, or set of points, the analyst will perform a point analysis at those
critical points.

One implicit assumption with the implementation of the infrastructure outlined
in Fig. 1 is that there are no conflicts for CPU resources between the isolated parts of
the process. In other words, it’s assumed that the lightweight processes of generating
a mesh, or adding an entry into the results database, will not interfere with the
more compute-intensive flow solver processes. In practice this is not a restrictive
assuniption. Most compute resources either provide a front-end machine. or isolate a
CPU or set of CPtTs, which are responsible for job scheduling, interactive tty sessions,
etc. Since the cost of mesh generation, etc. is amortized over thousands of flow solver
runs, and these tasks run concurrent with the flow solver, these lightweight processes
do not adversely impact the overall parallel efficiency.

2.1 Velocity Space
The implementation of the velocity space control script is straightforward. The

control script sets the velocity space parameters which are inputs for the flow solver,
creates any required directory and file structures, and then executes the solver. After
the solver finishes, the aerodynamic coefficients are returned as results of the control
script to the process which executed the velocity space script. These coefficients are
selected by the user, and can contain items such as hinge momeiits, bending nioments,
etc., in addition to the 6 aerodynamic coefficients for the entire configuration. The

'

(r

flow solver can execute either on a single processor or in parallel. Filling a parameter
space involves computing many essentially identical problems, hence the parallelism is
usually exploited on this coarser-grained level, not at the finer level of the flow solver,
however there is nothing which prohibits combining both fine- and coarse-grained par-
allel strategies. The Cartesian solver does not require case-specific inputs for each set
of flow conditions, which greatly simplifies the velocity space sub-system. The solver
contains a hierarchy of robustness levels, with each increasing level requiring more
computing resources. The run strategy simply starts with the least robust scheme,
and proceeds up the hierarchy if a computation is numerically unstable. At the high-
est level of robustness it is always possible to maintain numerical stability, though it
is still possible to generate spurious results, for example when computing an inher-
ently unsteady problem with a steady-state method. In practice these pathological
cases are relatively easy to filter, for example by monitoring convergence in residuals
and computed aerodynamic loads. The velocity space control script is responsible
for creating the flow solver runtime environment. Several interfaces are provided,
including a simple interactive runtime process, job management directly through the
portable batch system (PBS)[ll], and an interface to the web-based AeroDB job con-
trol software[3]. Again, since the velocity space control scripts are self-contained they
can evolve along with new runtime environments without effecting the remainder of
the process.

2.2 Configuration Space

One powerful feature of the Cartesian method is the ability to automatically
create a computational mesh about varying geometric configurations, as has been
demonstrated for computing bodies in relative motion[l2, 131 and aerodynamic shape
optimization[l4]. Moving control surfaces within a static configuration space also re-
quires the ability to "re-mesh" changing geometric configurations. The complete set
of control surfaces and their possible deflections, or orientations, makes up the config-
uration space. This configuration space is described using the Configspace datatype
from the GLIP protocol. GhlP is a set of rules and datatypes for manipulating
geometry for CFD applications. Only a brief overview is provided here, and more
information can be found in [8? 1. Each Configspace is defined by a set of Parame-
ters (control surfaces) , which are usually a single water-tight component (or groups of
components) in the surface triangulation of the geometry. These Parameters take a
finite number of discrete States, which are specified as rigid-body motions relative to
the complete Configuration. The allowable rigid-body motions are extremely general
and flexible. The GMP specification is stored in an XML file, which can be parsed
by the application control script to determine the number of Parameters, how many
States are specified for each Parameter, etc. The application control script for the
configiiration space thus looks very similar to the velocity space script, except that
the matrix of parameters are control surfaces and deflections, rather than changes to
the velocity vector. The Configspace datatype also allows the specification of groups

5

of Parameters and States: for instance a coarse-, medium-, and fine-grained set of
control surface deflections. A iiiicldleware layer between the GMP specification and
the Cartesian applications actually does the work of translating the GMP Paranieters
and States into a unique geometric configuration.

2.3 Post-processing

Post-processing a large aerodynamic database usually employs two strategies: cre-
ating line or carpet plots of aerodynamic coefficients against the independent variables
(M- - V I a. 1 I 0. hp\. .-, or viewine: v and analyzing pre-defined flow visualization results, such
as surface contours or cutting planes, using a matrix visualization strategy. Either
of these methods may be used in an interactive or batch-processing mode depending
upon the needs. The current process has been used successfully with both approaches,
and sample results will be presented in tlie next section.

One of the strengths of a modular process design is the ability to use 3rd-party
tools when practical. These tools are used in many parts of the process in Fig. 1,
e.g PBS, GMP, etc., including limited use of database software packages based on
SQL or' the ODBC API. The storage and search requirements for a CFD aerody-
namic database are relatively modest, so a tree-based database storage solution is
not a necessity, however the use of a standardized database does have benefits Since
database APIs are static and supported by a large user community, a CFD database
can be portable across many application doniains rather than focused on a niche. For
example, a database with an SQL or ODBC interface can easily be ported to web ser-
vices Similarly, a supported API allows different doniains, such as G&C, structures,
and aerodynamics to speak a common language, and build their individual tools on
a known stable system. Further, the use of a database software package allows the
results of a CFD aerodynamic database to evolve to include items such as flowfield
images. documentation. or cutting planes, which would be inconvenient to implement
into a simpler format.

TWO methods of performing interactive flow visiialization with a CFD database
have been explored. The first uses the Paravista software package[l5] to view a
niatrix of parametric cases (c.f. Fig. 2). Here, rather than looking at a single solution,
a range of solutions can be viewed and interrogated. Paravista allows the database
to be stored locally or accessed remotely through a web server portal. A similar
idea is the NASA hyperwall of computer displays and graphics cards to interactively
display a set of solutions[lG]. The user interacts with software which controls the
entire hyperwall of displays rather than multiple windows within a single display.

Another important aspect of utilizing a CFD aerodynamic database is performing
a flight simulation by coupling a guidance system and 6-DOF package with the aero-
dynamic performance data. An example is presented in Fig. 3, where an aerodyiiainic
model built from a CFD database and theoretical considerations is compared to a live-
fire missile test The trajectory predicted by tlie database is in excellent agrcenieiit
with the flight-test data until the missile performs a high-g maneuver near time =

G

. I I + I

I

I

I

I
I
t
I
I

i
I

i
I
i
i
t
t

f
f
!
1

i
i

1
!

I

P
!
2

j

I
1
i
1
i

I
I
j
I
I

i
I
I
I 1
I
!

i

c

Figure 2: Screenshot of the Paravista parametric flow visualization package which allows multiple
sc;!:itionj to be queried at once. Here changes in elevon deflection angle are running horizontally:
with Mach number running vertically.

15 sec., after which the two begin to diverge. The trajectory simulation using tradi-
tional methods without access to CFD results did not closely match the experimental
test trajectory. The memory and CPU requirements to perform such a trajectory
simulation are modest. For a database containing lo6 points, all of the aerodynamic
coefficients for a configuration require only 6 Mw7 so that direct addressing of the
data is practical. One aspect of a trajectory simulation which must be accounted for
throughout the process is the use of symmetry. Reflecting data, e.g. sideslip, when
applicable is common, and can greatly reduce the computational work. This infor-
mation must be preserved in some manner throughout the entire process however, so
that the end-user of the data, a trajectory simulator or G k C developer for example,
can make use of it. Similarly, i t is sometimes possible to enforce a symmetry condition
when the variations from a symmetric geometry are minor. This reduction leads t o a
small loss in accuracy, hosever can greatly reduce the total required number of cases.
For example, Greiner plot and numbers w o d d 90 here.

7

I P I 1

Figure 3: 6-DOF trajectory siniulation using a CFD aerodynamic database compared to a live-fire
missile test.

3 BEES Flyer Example
The bio-inspired engineering of explorations systems (BEES) flyer is envisioned

as a small, autonoinous platform with sensing and control systems mimicking those
of biological systems, for scientific exploration on the surface of Mars[9]. The current
BEES flyer is a delta-wing with twin vertical tails aiid two elevons which provide pitch
and roll control of the aircraft (c.f. Fig. 4). Since the flying wing design is unstable in
pitch, the control system must coiistantly provide stability bji adjfistiiig the elevons.
A neural-network-based adaptive flight control system is being developed to provide
this, however accurate stability a,nd control (S&C) information is required in order
to develop such a system.

The Cartesian method described in Sec. 2 was used to compute a parametric set
of solutions over the expected flight domain. S&C derivatives were extracted from
the database and integrated with the neural flight control system. Each elevon was
positioned independently, and both were allowed to range over [-lo, 201 deg. of pitch
with 7 discrete settings. Eight Mach numbers, six angles of attack, and two sideslip
angles were computed for a total of 4704 datapoints and 5 independent parameters.
This database is a prototype for use in initial development of the neural network
system, and to provide an overview of the flow features. As the BEES flyer design
is refined, so can the database be augmented to provide a more refined view of the
aerodynainics near the expected design operating conditions.

The BEES flyer geometry was obtained from a CAD solid model, and is shown
with a cutting plane through the computational mesh in Fig. 5. Each mesh contains
approximately 1.5ill cells, with a finest refinement of 1.5 mm. As the elevons change

8

Figure 4: Prototype of the BEES flyer geometry (c.f. Ref. [9] for more details).

position, the Cartesian meshing scheme responds to the change in surface definition
and refines and coarsens the mesh appropriately. This causes the total number of
cells in the mesh to vary around 1.5 million depending upon the elevon settings.
All computations were run on a 256-CPU SGI Origin 2000 machine with 400 LfHz
MIPS4 processors. Each individual datapoint required 9.3 hours of CPU time, and
the entire database was filled in 9 days of wallclock time. During the database build
the machine was shared with other users in a typical production environment. In
fact, the machine was taken down for hardware maintenance twice during the 9 days
without impacting the automated process.

Examples of the solutions are shown in Fig. 6 for two transonic Mach numbers.
The elevons are deflected asymmetrically. As the freestream Mach number increases
the shock on the wing upper surface and engine canopy moves aft from the leading
edge and gets stronger. The asymmetry in the aft loading due to the elevon deflections
is also evident. The large drag clue to the strong shock adversely impacts the range of
the vehicle, and hence the preliminary design cycle successfully identified a problem
and solution early in the process.

9

Figure 5 : BEES flyer geometry with a cutting plane through the Cartesian mesh. The triangulated
surface geometry was generated directly from a CAD solid model. The Cartesian mesh generation
automatically refines near large geometric curvature.

4 Future Work

A modular process for performing parametric studies about a configuration using
a Cartesian method has been described. This process leverages existing stand-alone
applications for performing isolated steady-state siinulatiolls, and glues them together
with control scripts to provide the functionality for performing a set analysis. A novel
part of this process is the automatic handling of general control surfaces deflections
based upon simple, user-specified inputs. With the basic infrastructure in place and
tested, improvements can be initiated. The proposed paper will include details of
different steering strategies. Steering is a critical component of developing an aero-
dynamic database as it directly impacts both efficiency, by optimizing the benefit
for a fixed amount of work, and the accuracy by placing datapoints where there are
abrupt changes in the S&C derivatives. An example from Ref. [3] of lift vs. Mach
niinbcr and angle of attack for a liqiiicl glide-back booster is shown in Fig. 7. Except

10

.

Mach Number Contours
L. flewn - -10.0~
R. Elevon - 5.0

(a) M , = 0.7, CY = 15.0"

Mach Number Contours

M- - 0.8
a= 10.0'
$ - 0.0'

(b) &Im = 0.8, CY = 10.0"

Figure 6: Surface Ivlach number for the EiI3E.S fiyer. Red is high, blue is iow.

near Mach 1.0, the variation of the derivatives is relatively benign. Refining near the
sonic line throughout the angle of attack range, and coarsening elsewhere would be
more optimal. This example is straightforward, however the design space with control
surface deflections becomes more complicated, and methods that can automatically
adjust are desired.

Another important topic is the merging or augmenting of databases using isolated
refined datapoints. Two examples will illustrate the problem. The first is performing
a parametric study early in the design cycie, and still leveraging that information
later in the cycle after the design has changed. A second example is the use of
multiple levels of fidelity, with the lower-fidelity tools being chosen for the majority
of the design space, and higher-fidelity datapoints added at selected or critical areas.
In both of these examples the idea of incrementally modifying the design response
siirface with the higher-fidelity data is appealing. This approach can provide higher-
fidelity performance at the cost of a low-fidelity analysis. The proposed paper will
also include a discussion of this topic.

References
[l] Yarrow, M., McCann, K.M., DeVivo, A. and Tejnil, E., "Production-Level Dis-

tributed Parametric Study Capabilities for the Grid," in Proceedings of Grid
2001 2nd International Conference on Grid Computing, 2001.

[2] Murman, S.M.. Chaderjian, K.M.. and Pandya, S. A., '-Automation of a Navier-
Stokes SSLC Database Generation for the Harrier in Ground Effect," AIXA Paper
2002-0259, Jan. 2002.

11

1.5 i

Figure 7: Variation of lift for a liquid glide-back booster configuration (from Ref. [3]) .

[3] Rogers, S. E., Aftosmis, M. J., Pandya, S. A., Chaderjian, N. M., Tejnil, E. T.,
and Ahmad, J. U., “Automated CFD Parameter Studies on Distributed Parallel
Coinputers,” AIAA Paper 2003-4229, June 2003.

[4] Aftosmis, M.J., Berger, M.J., and Melton, J.E., “Robust and Efficient Cartesian
Mesh Generation for Component-Based Geometry,” AIAA Journul, 36(6):952-
960, June 1998.

[5] Hainies, R. and Aftosmis, hI. J., “On Generating High Quality “Water-tight”
Triangulations Directly from CAD,” in Meetzng of the Internatzonal Soczety for
Grid Generatzon (ISGG) 2002, June 2002.

12

[6] Aftosniis, M. J., Berger, M. J., and Adomavicius, G., “A Parallel Multilevel
Method for Adaptively Refined Cartesian Grids with Embedded Boundaries,‘’
AIAA Paper 2000-0808, Jan. 2000.

[7] Berger, M. J., -4ftosmis, M. J., Marshall, D.D., and Murman, S.M., “Performance
of a New CFD Flow Solver using a Hybrid Programming Paradigm,” submitted
to the Journal of Parallel and Distributed Computing, 2003.

[SI Murman, S.M., Chan, WM., Aftosmis, M.J., and Meakin, R.L., “An Interface
for Specifying Rigid-Body Motion for CFD Applications,” AIAA Paper 2003-
1237: Jan. 2003.

[9] Soccol, D.D., Chahl, J.S., Le Bouffant, J., Garratt, M.A., Mizutami, A., Thur-
rowgood, S.A., Ewyk, G., and Thakoor, S., “A Utilitarian UAV Design for NASA
Bioinspired Flight Control Research,” AIAA Paper 2003-461, Jan. 2003.

[lo] Murman, S.hl., Aftosmis, M.J., and Berger, X4. J., !%‘urnerical Simulation of
Rolling-Airframes Using a bfulti-Level Cartesian Method,” AIAA Paper 2002-
2798, June 2002.

[ll] “Portable Batch System.” http://pbs.nirj.com.

[12] Murman, S.M., Aftosmis, M.J., and Berger, MJ., “Implicit Approaches for Mov-
ing Boundaries in a 3-D Cartesian Method,” AIAA Paper 2003-1119, Jan. 2003.

[I 31 Miirman, S.M., Aftosmis, M.J., and Berger, M.J., “Simulations of 6-DOF Motion
with a Cartesian Method,” AIAX Paper 2003-1246, Jan. 2003.

[14] Neniec, M., Aftosmis, M.J., and Pulliam, T.H., “CAD-Based Aerodynamic De-
sign of Complex Configurations Using Cartesian Methods,” AIAA Paper 2004-
0113, Jan. 2004.

[15] “ParaVista.” littp://~~-~~-;m~.viz-solutions.com/ParaVista.htm.

[16] Sandstroni, T., Henze, C., and Levit, C., “The hyperwall,” in Proc. of IEEE
International Conference on Coordinated & Multiple Views in Exploratory Visu-
alization, pp. 124-133, 2003.

13

